
AcademicRank: Rank Academic Works on Specific Field of Study

Haozhe Si (NetID: haozhes3)

May 2021

1 Introduction

Millions ans billions of academic works are there on the internet. To find the most classical
reference about a specific keyword, people would usually search for that keyword on websites like
Google Scholar. This searching strategy seems to be reasonable, however, this may not be the case.
Searching engines like Google Scholar performs ”title search”[1], that is to say they would prefer
to rank the academic works whose titles contain the keywords we are searching for higher, but the
field of study of an academic work may not appears in its title. This motivated us to build a more
precise ranking algorithm that can take the field of study into consider when ranking the academic
works given a keyword instead of solely rank the papers filtered out by titles. In addition, we made
the assumption that a classical academic work would not only relate to the its citation number,
but also how important the citing sources are. Thus, this becomes very intuitive for us building
our model on the PageRank algorithm[1]. To sum up, in this project, we are going to build a
directed graph of citation where nodes are academic works and the edges represents the citation
relations, and perform a PageRank calculation on that graph. To simplify our task, we limited the
academic works in Computer Science domain and so does the keywords. The specific approaches
are discussed in the following sections.

2 Approaches

2.1 Dataset Selection

To achieve the goal we mentioned above, we need to acquire the citation relationship between
the Computer Science papers. Fortunately, there are two datasets, unarXive[2] and Microsoft
Academic Graph(MAG)[4], that provides this information and we tried to implement our task
on both of the two datasets. We modified our implementation base on the data provided by the
two datasets slightly. The details are discussed below.

2.1.1 unarXive

unarXive is a data set based on all publications from all scientific disciplines available on
arXiv.org[2]. It provides the papers’ plain text and in-text citations annotations, which essentially
provides the citation relationship we need and the context (the sentence containing the citation
mark and the sentences before and after that sentence) of each citation. We take the context
of citation as anchor text, and tried to extract Computer Science keywords from that context to
assign field of study of the cited paper. After processing the large datasets and taking out what
we need, we have two major datasets, one keeps the citing and cited paper relationship, as well as
counting how many time such pair exists; another keeps the fields of studies of each paper. We
planned to implement a Weighted PageRank algorithm by first filtering out all the directed edges
whose destination(cited paper) contains the target keyword in its fields of study. Then, we assign
the weight base on how many times such citing-cited relationship occurs and perform the ranking
algorithm. This seems to be an feasible solution. However, the unarXive dataset has a serious issue,
that is arXiv.org only contains a small number of papers comparing to all of the Computer Science
works. Therefore, given all of the citing papers are on arXiv.org, only a small part of the cited
papers is on arXiv.org. The authors of the dataset also noticed this problem, thus, they connected
the cited papers to MAG, which is way larger than arXiv. This missing data caused our graph
being incomplete and having a lot of dangling nodes, which seriously affected the performance of
ranking algorithm. Hence, although it is precious that unarXive provides context information for
us so that we can use anchor text to find the field of studies, we had to give this dataset up due to
the limitation of dataset size.

1

2.1.2 Microsoft Academic Graph(MAG)

The Microsoft Academic Graph is a heterogeneous graph containing scientific publication
records, citation relationships between those publications, as well as authors, institutions, journals,
conferences, and fields of study[4]. It is a much larger datasets with sufficient information provided.
Among the datasets, we specifically choose three of them: (a) FieldsOfStudy, which lists the infor-
mation for fields of study; (b) PaperFieldsOfStudy, which saves the fields of study of each papers,
notice that each paper may have multiple fields of study; (c) PaperReferences, which contains the
citation relationships of the papers. Unlike arXiv, MAG is a collection of all the scientific papers
instead of Computer Science only, and thus, there are more than one billion items in the second
and third datasets. It is necessary for us to filter out the Computer Science keywords and prune
out papers that are not related to Computer Science. The details for pruning will be discussed
in following sections. Another difference of implementation detail to using the unarXive dataset
is that we no longer have reliable citation context information. That means we can only use the
field of study information MAG provides us, instead of using anchor text as we used in unarXiv.
Considering the strong connection and abundant information provided by MAG, we finally chose
this dataset.

2.2 Dataset Pre-process

As we mentioned, some data in MAG dataset is redundant for our task of ranking Computer
Science academic works. Thus, we need to prune the datasets first. We perform the pruning in
three steps:

• Prune Fields of Study: The FieldsOfStudy dataset has 741K items. To filter out the
Computer Science keywords, we selected a computer science keyword dataset with 83K items
collected from Springer by Y. Peng in the FORWARD Data Lab. We first try to check if the
field of study is in the CS keyword dataset, if so, we will keep that keyword. The resulting
pruned dataset has 25K items. However, when we inspecting the new field of study dataset,
we found that some of the keywords that were originally in the CS keyword dataset are not
actually CS keywords, such as ”medicine” or ”crystal”. This is possible because CS techniques
can be used in other disciplines, which make keywords from other disciplines being collected
and considered as CS keywords. However, keeping such keywords will resulting inefficient
pruning of papers and edges, since a lot of papers will have ”medicine” as their field of study,
but they may not relate to Computer Science at all. Thus we made an assumption that in
the CS keyword dataset, the keywords with multiple words will be more descriptive while
the single word keyword, being general, can be also pruned; meanwhile, the keywords from
other disciplines will mainly be the general keywords since they have higher chance to exist
in CS papers and thus can be collected into the initial dataset. The resulting dataset has 21K
items.

• Prune Papers’ Fields of Study: Having the pruned field of study set, we than iterate
through the PaperFieldsOfStudy dataset and check if the paper’s field of study is about
Computer Science. After pruning out the fields of studies that are unrelated to Computer
Science, we reduced the number of items of the dataset from 1.4 billion t0 356M.

• Prune Paper References From the pruned papers’ field of study dataset, we can generate
a set of papers that are containing CS fields of study. This set of papers about CS can be
used to prune out the papers’ citation relationship: if either the citing work or the cited work
is not in the CS paper set, we are going to discard the item. Building such citation relation
dataset only for CS leads to a drop of items from 1.67 billion to 1.09 billion.

Such pruning for dataset takes about two hours to be finished. Fortunately, we only need to perform
this pruning once and it will save much time in ranking calculation.

2.3 Ranking Algorithm Implementation

Since the PageRank[1] algorithm being introduced in 1998 by Larry Page, it has been one of
the most classical ranking algorithm. PageRank algorithm, as well as Personalized PageRank, are
wildly used in ranking problems for web pages, where each page is considered equally important.
Meanwhile, algorithm for calculating PageRank for weighted items was also purposed[5] by , which,
as indicated, can calculated the rank where weights are involved. As stated before, our project is
correlated with the weighted ranking algorithm. Before actually applying the ranking algorithm,
we need to translate the datasets into a weighted Personalized PageRank setting first.

2

a0 a1

a2 a3

sim(τtar, Ta1)

sim(τtar, Ta2)
sim(τtar, Ta3)

sim(τtar, Ta3)

sim(τtar, Ta2)

Figure 1: An example for a established citation net. ai means an arbitrary article. The directed
edges interpret that the source articles are citing the destination articles. τ means a single keyword.
τtar means the keyword we are searching for and Tai = {τ0, · · · , τn} is the set of fields of study for
article ai. sim(τtar, Tai) is calculated by maxτ∈Tai similarity(τtar, τ) and the word-wise similarity
is calculated using word2vec model.

2.3.1 Setup

Algorithm 1 shows the pseudo code for calculating the Personalized PageRank[1]. In the
original Personalized PageRank algorithm, we perform the power iteration, as Line 4 shows, until
the rank is converge. Here, we would like to further inspect what does this power iteration do to
each entry in the rank.

Algorithm 1 Personalize PageRank

1: R0 ← E
2: δ ← +∞
3: while δ > ε do
4: Ri+1 ← ARi+1

5: d← ‖Ri‖1 − ‖Ri+1‖1
6: Ri+1 ← Ri+1 + dE
7: δ ← ‖Ri+1 −Ri‖1
8: end while
9: return R

Given the update rule for rank Rt+1 ← ARt+1, we can write out how the i-th entry ai is
updated:

Rt+1[ai] =
∑

aj∈p(ai)
A[aj , ai] ·Rt[aj] (1)

Where Rt is the rank in current round of update and Rt+1 is the rank we are calculating; A
represents the citation relationships as well as the weight information; p(ai) means all the parents
node of ai. Therefore, we can conclude that, a rank of a given node is the sum of a discounted
rank of its parents. The next step is how to assign the discounted coefficient. That is to say,
given we are at a random node, how should we distribute the rank of the node to its children. In
our implementation, we chose to assign the weight using the relativity of our target keyword(the
keyword we are searching) and the paper. To be specific, the relativity is defined as the highest
similarity between the target keyword and all the fields of study of a given paper, where the
similarity is calculated using the word2vec model. Figure 1 will be an example for a weighted
directed graph for representing the citation network. In such setting, we will re-write our update
equation in the way that:

Rt+1[ai] =
∑

aj∈p(ai)

sim(τtar, Tai)∑
ak∈c(aj) sim(τtar, Tak)

·Rt[aj] (2)

Where sim(τtar, Tai) = maxτ∈Tai similarity(τtar, τ) and c(aj) means all the children of aj .

2.3.2 Rank Initialization

Notice the Line 1 of Algorithm 1, we initialized R0 using E. The E vector in our setting
can intuitively corresponds to the relativity of the paper and the target keyword. In other words,

3

we would assume the papers that are more relative to our target keyword will have higher initial
rank. Thus, we calculated the relativity of each papers to the keyword as we did before:

R0[ai] = sim(τtar, Tai), ∀ai (3)

Such initialization of R also implies that instead of treating rank as probability as in [1], we would
consider the rank as the relativity, and what we are calculating for using the ranking algorithm is
the most relative paper to the target keyword.

2.3.3 Relativity Redistribution Assumption

In the web page setting of Personalized PageRank, we need to repeat the power iteration
until the rank is converge. Such iteration is mathematically reasonable because, as stated before,
the rank in [1] is considered as probability. Probability for the ranks always sum to one after
normalization, which ensures the rank value will not explode after rounds of iteration. However,
it is a different case in the academic rank setting. The rank in our task is considered as relativity
and normalizing such relativity has no mathematical meaning. In addition, after one iteration of
update, the mathematical meaning of the rank would change a concrete idea of similarity between
keywords to an abstract idea of re-distributing such similarities. Thus, unlike the original PageRank
algorithm, we cannot normalize the rank nor can we treat the the rank before and after a iteration
the same. To circumvent the conceptual confusion, we made an assumption that the rank algorithm
in our task can only be done once and then we can get a reasonable result. With this assumption,
we can remove the normalization steps for the rank R since normalization for relativity does not
make sense. The Personalize PageRank algorithm with our assumption now is essentially distribute
the initial rank of a node to all its children according to how similar its fields of the study and
the target keywords are; while each node accumulates such re-distributed rank, new rank would be
calculated. Thus, the new update equation will be

R[ai] =
∑

aj∈p(ai)

sim(τtar, Tai)∑
ak∈c(aj) sim(τtar, Tak)

·R0[aj] (4)

Plug (3) into (4), we can have

R[ai] =
∑

aj∈p(ai)

sim(τtar, Tai)∑
ak∈c(aj) sim(τtar, Tak)

· sim(τtar, Tai) (5)

Therefore, we can calculate the rank for the papers purely using the similarity between their fields
of study and the target keyword. That makes the algorithm highly rely on the performance of the
word2vec model.

From (5) we can see that all the information we need to calculate the rank is the similarity
between their fields of study and the target keyword. Since we already have the Pruned Field of
Study dataset, we can pre-calculate all the similarity(τtar, τ) for τ in the dataset. Then, given
the Pruned Papers’ Fields of Study dataset, we can find the maxτ∈T similarity(τtar, τ) for each
paper given its set of fields of study T . Then, we can build a lookup table where given the paper
ai, we can find sim(τtar, Tai) in O(1). These steps above needs to be done for each target keyword.

2.3.4 Linear-time Implementation

In past works, people would build matrices and vectors for PageRank calculation. This is
reasonable because the adjacency matrices A describing the networks are usually sparse matrices,
which is fast to calculate, and the matrices calculation can be further speed up using various tricks
or implementations[3, 6]. However, building the adjacency matrices, which requires going through
all the edge information of the graph, take O(|E|) time. Since we are only calculating the rank for
one time, we came up with an algorithm that will accumulate the rank for each cited paper as the
edge data being read in. In our algorithm, each edge will be accessed twice and thus the runtime
for the ranking algorithm will be O(2|E|) = O(|E|).

Algorithm 2 is our purposed algorithm. It is easy to observe that each (aj , ai) pair is visited
exactly twice. In the pseudo code, Line 3-6 is preparing for calculating the normalization and Line
7-9 is performing one addition in (5). sim[ai] is the dictionary that contains the max similarity
between the target keyword and the fields of study of ai.

The outer loop of Algoritm 2 is iterating all the source nodes in the citation relationship graph,
while given a source node we will iterate through all its children nodes. This order of iteration

4

Algorithm 2 AcademicRank

1: R← dict()
2: for aj in PaperSet do
3: sum child← 0
4: for ai in child(aj) do
5: sum child← sum child+ sim[ai]
6: end for
7: for ai in child(aj) do

8: R[ai]← R[ai] + sim[ai]
sum child · sim[aj]

9: end for
10: end for
11: return R

surprisingly matches how the data is ordered in the PaperReferences dataset, where data is ordered
by the Id of the citing papers. Taking the the advantage of the data order, we can load in the
dataset line by line and check if the source node has been changed, if not, we will perform Line 3-6
and if so, we will perform Line 7-9 for the old source in addition, Also, in real implementation, if
we only want to rank the papers that contain the target keyword in their fields of study, we can
only accumulate the ranks for these papers and the running time and memory usage can be further
improved. Algorithm 3 is our resulting implementation.

Algorithm 3 AcademicRank on MAG

1: R← dict()
2: old src← None
3: for src, dst in PaperReferences do
4: if src 6= old src and old src 6= None then
5: for old dst in child(old src) do
6: if τtar in Told dst then
7: R[old dst]← R[old dst] + sim[old dst]

sum child · sim[old src]
8: end if
9: end for

10: end if
11: sum child← 0
12: old src← src
13: sum child← sum child+ sim[dst]
14: end for
15: return R

3 Result

3.1 Data Pruning Result

Table 1 shows the resulting dataset size after being pruned. We can see from the table that
using multi-word keywords only will lead to a drop of items in the FieldsOfStudy dataset and even
larger drops in PaperFieldsOfStudy and PaperReferencecs datasets, which proves the effectiveness
of pruning. Notice that in addition to the Springer(83K) CS keyword set, we also performed the
pruning using Aniner-MAG(82K) set. This comparison will be explained in section 4.1.

Dataset Size Comparison

CS Keyword Set
FieldsOfStudy PaperFieldsOfStudy PaperReferences

Effective
741K 1.40G 1.67G

Aminer-MAG all 52K 1.15G 1.61G -
(82K) multi 43K 564M 1.46G 3839

Springer all 25K 777M 1.66G -
(83K) multi 21K 356M 1.09G 3996

Table 1: The size of each datasets after being pruned using the selected CS keyword set. The
CS keyword set are collected from Aminer-MAG and Springer respectively, and all mean using
all the keywords while multi means using only keywords consists of multiple words. The numbers
mean the number of items in the dataset. The Effective column implies how many keywords in
the resulting FieldsOfStudy dataset is also in the vocabulary of the word2vec model, and thus can
effectively calculate the similarity.

5

3.2 Ranking Result

We tried to use our implementation to find the top 10 academic works that are relate to the
keywords ”data mining”, ”information retrieval”, ”computer architecture” and ”machine learning”.
We are only keeping the papers that actually containing these keywords as their fields of study. For
the fields of study that are not in the vocabulary of the word2vec model and thus similarity cannot
be calculated, we arbitrarily assigning similarity as 0.001. This arbitrary assigning of weight makes
this experiment not guaranteed as we hope, but its comparison with simply ranking using citation
numbers shows that our implementation is not trivial.

AcademicRank Citation Count

Fuzzy sets Latent dirichlet allocation

Data Mining: Concepts and Techniques Data Mining: Practical Machine Learning
Tools and Techniques

Multi-resolution, object-oriented fuzzy analysis
of remote sensing data for GIS-ready informa-
tion

Statistical Analysis with Missing Data

Mining association rules between sets of items
in large databases

PLINK: A Tool Set for Whole-Genome Associ-
ation and Population-Based Linkage Analyses

Latent dirichlet allocation Visualizing Data using t-SNE

Data Mining: Practical Machine Learning
Tools and Techniques

Community structure in social and biological
networks

A manual for repertory grid technique RAxML version 8: a tool for phylogenetic anal-
ysis and post-analysis of large phylogenies.

Querying and mining of time series data: ex-
perimental comparison of representations and
distance measures

Fast Algorithms for Mining Association Rules
in Large Databases

Statistical Analysis with Missing Data Categorical Data Analysis

Data Mining Cluster Analysis

Table 2: Top 10 ranks for Data Mining using our algorithm and direct citation count. Bold titles
shows the academic works that exist in both ranking results.

AcademicRank Citation Count

The anatomy of a large-scale hypertextual Web
search engine

Indexing by Latent Semantic Analysis

ImageNet: A large-scale hierarchical image
database

WordNet : an electronic lexical database

WordNet : an electronic lexical database The scree test for the number of factors

Image Analysis and Mathematical Morphology Qualitative data analysis: a sourcebook of new
methods

Indexing by Latent Semantic Analysis DAVID: Database for Annotation, Visualiza-
tion, and Integrated Discovery

Introduction to Modern Information Retrieval The RAST Server: Rapid Annotations using
Subsystems Technology

Data clustering: a review DBpedia: a nucleus for a web of open data

Three Approaches to Qualitative Content
Analysis

Detecting influenza epidemics using search en-
gine query data

Modern Information Retrieval Dali server: conservation mapping in 3D

The Sequence Alignment/Map format and
SAMtools

GroupLens: applying collaborative filtering to
Usenet news

Table 3: Top 10 ranks for Information Retrieval using our algorithm and direct citation count.
Bold titles shows the academic works that exist in both ranking results.

Table 2,3,4,5 show the top 10 ranks for the four selected keywords. We bold the titles of
common academic works in the two ranking methods to show that the resulting paper and order of
our algorithm is largely different with the result got from counting citation. Therefore, the works
with high citation numbers will not always be the most classical one, we expects the works being
cited by more related works having higher ranks. Also, we can see that the title of the highly
ranked works do not necessarily containing the keyword we are looking for. This is what we our
desired result since the ranking is for what the works are about instead of whether the keywords
are contained in their title.

6

AcademicRank Citation Count

RAID: high-performance, reliable secondary
storage

Introduction to VLSI systems

Overview of the High Efficiency Video Coding
(HEVC) Standard

CMOS VLSI Design: A Circuits and Systems
Perspective

Caffe: Convolutional Architecture for Fast Fea-
ture Embedding

Computer Architecture: A Quantitative Ap-
proach, 2nd Edition

Overview of the Scalable Video Coding Exten-
sion of the H.264/AVC Standard

Introduction to the cell multiprocessor

Cognitive Radio An Integrated Agent Architec-
ture for Software Defined Radio

Computer architecture (2nd ed.): a quantita-
tive approach

Introduction to VLSI systems The structure of the “THE”-
multiprogramming system

Why systolic architectures Garp: a MIPS processor with a reconfigurable
coprocessor

The gem5 simulator DIVA: a reliable substrate for deep submicron
microarchitecture design

SimpleScalar: an infrastructure for computer
system modeling

The case for a single-chip multiprocessor

Reconfigurable computing: a survey of systems
and software

ANGSD: Analysis of Next Generation Sequenc-
ing Data

Table 4: Top 10 ranks for Computer Architecture using our algorithm and direct citation count.
Bold titles shows the academic works that exist in both ranking results.

AcademicRank Citation Count

Genetic algorithms in search, optimization, and
machine learning

The Nature of Statistical Learning The-
ory

Distinctive Image Features from Scale-
Invariant Keypoints

An introduction to ROC analysis

The Nature of Statistical Learning The-
ory

Visualizing and Understanding Convolutional
Networks

Particle swarm optimization A comparison of methods for multiclass sup-
port vector machines

Neural Networks: A Comprehensive Founda-
tion

Neural network design

LIBSVM: A library for support vector ma-
chines

Statistical Inference

Understanding the difficulty of training deep
feedforward neural networks

Natural Language Processing (Almost) from
Scratch

Deep Residual Learning for Image Recognition Instance-Based Learning Algorithms

ImageNet Classification with Deep Convolu-
tional Neural Networks

Comparison of Multiobjective Evolutionary Al-
gorithms: Empirical Results

Statistical learning theory Fast learning in networks of locally-tuned pro-
cessing units

Table 5: Top 10 ranks for Machine Learning using our algorithm and direct citation count. Bold
titles shows the academic works that exist in both ranking results.

One thing to notice that, since MAG dataset also contains the information for book and reviews,
therefore, strictly speaking, we are calculating the ranking for CS works instead of papers only.
One can also filter out the papers at the Line 6 of Algorithm 3 to ensure that only papers will
be in the ranking result.

4 Discussion

4.1 Computer Science Keyword Dataset Selection

To filter out the CS keywords from the FieldsOfStudy dataset, we need to select a CS keyword
set first. There are two such set provided: Aminer-MAG CS keyword set and Springer CS keyword
set. Aminer-MAG CS keyword set contains the keywords collected from the fields of study in MAG,
therefore, theoretically, it should be a more suitable keyword set in our task, since we are running
our ranking algorithm on MAG datasets. This can be seen from using Aminer-MAG keyword set

7

will result in a larger pruned FieldsOfStudy dataset than using Springer keyword set as shown in
Table 4.1. However, If we see the Effective column, we can see that the Aminer-MAG case has
fewer effective keywords than the Springer case. Given the Effective column records the number
of keywords that can be calculated the similarity using the word2vec model, the larger number
of effective keywords in each pruned FieldsOfStudy is more important. Therefore, we chose the
Springer CS keyword set due to its slightly more effective keywords.

4.2 word2vec Model

Although we chose the Springer CS keyword set for now, the 3996 effective keywords is far from
sufficient given the 21K keywords in the FieldOfStudy dataset. This insufficient effective keywords
leads to the incapability of calculating word similarity and thus the weights for the citation graph
are not complete in when calculating the examples above. The insufficient effective keywords in
due to the mismatch of the word2vec model’s vocabulary and our CS keyword set. The word2vec
model we currently use is trained using the abstracts of papers in arXiv, and results in a model
with 42K vocabularies. Meanwhile, our task runs on MAG dataset. Such mismatch of training
and task domain may leads to the insufficient effective keywords. This problem can be solved by
training on larger corpus(e.g. full-text on arXiv) or abstracts from MAG dataset.

4.3 Overall Assessment

Our AcademicRank algorithm is build on a definition of rank and an assumption about that:
we defined the rank to be the relativity of the paper to the target keyword, where the relativity
is calculated by measuring the similarity of the paper’s fields of study and the target keyword; we
assume such definition of relativity prevent the algorithm to be run multiple rounds until converge
and take the result after performing power iteration one time as our final result. However, this
assumption is made base on the concept of relativity while the concept of relativity in this task
is also defined by us. Thus, more experiments are needed to show if the one-shot algorithm in
calculating the rank is enough and if not so, how can we interpret the rank to make the power
iteration mathematically reasonable. In addition to providing the conceptual build up for the
ranking task, our progress in this project is more about building pipelines for calculating rank on
MAG dataset, which including translating the task in to a graph, pruning the datasets and running
the ranking algorithm. One of the major challenges in this task is the large dataset leads to slow
calculation. Our purposed ranking algorithm runs in linear time and can be run multiple times as
long as we accumulate all the ranks and use them as the initial rank in the next round, which still
can be done in linear time. The result we get right now is not guaranteed and can be improved
after we have a better word2vec model and verify our assumptions.

4.4 Future Plan

First of all, we need a word2vec model with larger vocabulary to increase the number of effective
keywords and build a more complete graph. Second, we need to verify the relativity re-distribution
assumption, by checking whether running our algorithm once is sufficient to calculate the rank.
If it is not sufficient, the definition of rank in this task is also needed to be re-considered. Our
implementation present in this report inclines to solve the ranking problem in a shorter time. Since
the running time to solve the ranking for one keyword still takes about 2 hours right now in our
setting, coming up with faster implementations is always needed in this task. Finally, given our
current result of ranking is not guaranteed, we did not define a metric to measure the performance
of the algorithm, and this may needs to be done in future if more stable implementation is proposed.

5 Reflection

The most important thing I learnt in this project is that, as engineers, we need to convert the
problems from natural language to math model, than we can solve the challenges systematically and
explain our solution convincingly. Also, I was used to finding inspirations from reading papers, and
such methodologies in conducting research is more important than any concrete skills or knowledge
I leaned during this research like MySQL or Personalized PageRank. I like way that how our group
meeting is held, since work in the group of four provides me information about what other people
are doing, those are all new knowledge to me and sometimes can also inspire me in my own task as
well. Also, requiring us reading a paper each week is also helping us forming the correct researching
methodology as I mentioned before.

8

References

[1] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, November
1999. Previous number = SIDL-WP-1999-0120.

[2] Tarek Saier and Michael Färber. unarxive: a large scholarly data set with publications’ full-text,
annotated in-text citations, and links to metadata. Scientometrics, 125:3085–3108, 03 2020.

[3] Jieming Shi, Renchi Yang, Tianyuan Jin, Xiaokui Xiao, and Yin Yang. Realtime top-k per-
sonalized pagerank over large graphs on gpus. Proc. VLDB Endow., 13(1):15–28, September
2019.

[4] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul) Hsu, and
Kuansan Wang. An overview of microsoft academic service (mas) and applications. In Proceed-
ings of the 24th International Conference on World Wide Web, WWW ’15 Companion, page
243–246, New York, NY, USA, 2015. Association for Computing Machinery.

[5] W. Xing and A. Ghorbani. Weighted pagerank algorithm. In Proceedings. Second Annual
Conference on Communication Networks and Services Research, 2004., pages 305–314, 2004.

[6] Zhibo Zhu, Qinke Peng, Zhi Li, Xinyu Guan, and Owais Muhammad. Fast pagerank com-
putation based on network decomposition and dag structure. IEEE Access, 6:41760–41770,
2018.

9

